Herhaalde metingen: Difference between revisions

From Wikistatistiek
Jump to navigation Jump to search
m (broken link verwijderd)
 
(73 intermediate revisions by 5 users not shown)
Line 1: Line 1:
==Wat zijn herhaalde metingen?==
{{auteurs|
|mainauthor= [[user:Nan van Geloven|dr. ir. N van Geloven]]
|coauthor=  prof. dr. A.H. Zwinderman
}}
==Wat wordt bedoeld met herhaalde metingen?==


Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon/patient, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden:
Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon, patiënt, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden:


*'''herhaling in de tijd''': als patienten herhaaldelijk in een follow-up periode worden gemeten (of: voor en na een behandeling);
*'''herhaling in de tijd''': als dezelfde meting herhaaldelijk bij een patiënt wordt uitgevoerd, bijvoorbeeld  voor en na een behandeling, of gedurende een follow-up-periode;
*'''meerdere locaties''': metingen op meerdere locaties in het lichaam van dezelfde persoon (linker en rechter oog, meerdere coupes in een biopt, meerdere slices in een MRI beeld);
*'''meerdere locaties''': als metingen worden verricht op meerdere locaties in het lichaam van dezelfde persoon (linker- en rechteroog, meerdere coupes in een biopt, meerdere slices in een MRI beeld);
*'''meerdere condities''': als dezelfde patient onder twee of meer verschillende condities (bijv. behandelingen) wordt gemeten;
*'''meerdere condities''': als dezelfde patiënt onder verschillende condities (bijv. twee behandelingen of testcondities) wordt gemeten, bijvoorbeeld bij een cross-over-studie of bij het vergelijken van beoordelaars;
*'''herhalingen tbv nauwkeurigheid''': als een meting een grote variatie binnen een persoon heeft (of een grote meetfout) dan kan het zinvol zijn om een aantal aparte metingen te doen.
*'''herhalingen ten bate van nauwkeurigheid''': als een meting een grote variatie binnen een persoon heeft (of een grote meetfout), of wanneer bijvoorbeeld de beperkte steekproefgrootte om een grotere nauwkeurigheid vraagt i.v.m. power, dan kan het zinvol zijn om een aantal aparte metingen te doen;
*'''(andere) multilevel structuren''': als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep, of waarvan anderszins kan worden verondersteld dat metingen van personen binnen hetzelfde cluster  meer op elkaar lijken dan twee metingen van personen uit een ander cluster. Bijvoorbeeld: Patiënten die dezelfde huisarts hebben (zeker indien de interventie per huisartspraktijk is uitgevoerd) of in hetzelfde ziekenhuis behandeld worden kunnen vaak niet als onafhankelijke observaties worden beschouwd. Het klassieke voorbeeld hier zijn leerlingen die dezelfde docent hebben en docenten die weer bij eenzelfde school horen.


==Waarom kun je bij herhaalde metingen geen standaard regressie model gebruiken?==
==Waarom kun je bij herhaalde metingen geen standaard regressiemodel gebruiken?==


Bij een standaard regressie model wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaard fouten en de p-waardes (onterecht!) te klein.  
Bij een standaard regressiemodel wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaardfouten en de p-waardes (onterecht!) te klein.  
Bovendien kan de uitkomst van de regressie analyse volkomen fout zijn, zoals geillustreerd in het plaatje dat hieronder staat. In dit figuurtje worden de observaties van 6 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressie lijn door de totale punten-wolk de gele dalende lijn en deze geeft geen correcte weergave van de trend per patient.
Bovendien kan de uitkomst van de regressie-analyse zelfs volkomen fout zijn, zoals geïllustreerd in het plaatje dat hieronder staat. In deze figuur worden de observaties van 12 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressielijn door de totale puntenwolk de oranje dalende lijn en deze geeft geen correcte weergave van de trend per patiënt.


 
[[Image:14189829-0.jpg|500px]]
[[Image:Afbeelding herhaalde metingen.jpg]]


==Welke analyses zijn er mogelijk voor herhaalde metingen?==
==Welke analyses zijn er mogelijk voor herhaalde metingen?==


*'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt gebruiken, de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de [[herhaalde metingen#area under the curve| area under the curve]].
*'''Simpele methodes''': Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt of de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de [[herhaalde metingen#area under the curve| area under the curve]] uitrekenen, of de tijd tot het bereiken van een bepaalde grenswaarde van de uitkomstmaat te analyseren ([[survival analyse]]).
*'''Geavanceerde methodes''': Methodes die wel herhaalde metingen aankunnen zijn o.a. [[herhaalde metingen#mixed models|mixed models]], [[herhaalde metingen#repeated measurements ANOVA|repeated measurements ANOVA]] en Generalized Estimation Equations (GEE).
 
De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op.
Repeated measurements ANOVA is een specifieke variant van mixed-models, maar is alleen beschikbaar voor [[KEUZE TOETS#Van welk type is mijn data?|continue normaal verdeelde]] afhankelijke variabelen, die op vaste en dezelfde tijdstippen zijn gemeten in alle patienten.
Mixed-models en GEE-modellen zijn wat lastiger te specificeren, maar zijn flexibeler en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijv [[KEUZE TOETS#Van welk type is mijn data?|dichotome]] afhankelijke variabelen.
 
=area under the curve=
 
==Wat is een area under the curve en wanneer kun je die gebruiken?==
Wanneer er op meerdere tijdstippen metingen zijn van een patient, kun je die samenvatten in een "area under the curve". Hierbij bereken je per patient de oppervlakte onder de gemeten punten in de tijd. Deze samenvattende maat gebruik je vervolgens voor de analyse.
 
==Hoe bereken ik met SPSS een area under the curve bij herhaalde metingen?==
''Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er nl een stuk of 300 bepalen... heeft u nog een advies?
 
Je kunt de volgende [[Media: Syntax_for_calculating_AUC.doc | syntax ]] gebruiken, deze rekent per patient een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan.
 
=mixed models=
 
==Waarin verschilt een mixed model van een gewoon regressiemodel?==
 
<math>\begin{equation*}
\begin{array}{ccc}
Y_1 & = & \beta_0+\beta_1\cdot X_{1,1} + \hdots + \beta_m \cdot X_{1,m} + \epsilon_1 \\
Y_2 & = & \beta_0+\beta_1\cdot X_{2,1} + \hdots + \beta_m \cdot X_{2,m} + \epsilon_2 \\
\vdots &\vdots& \vdots\\
Y_n & = & \beta_0+\beta_1\cdot X_{n,1} + \hdots + \beta_m \cdot X_{n,m} + \epsilon_n
\end{array}
\end{equation*}</math>
 
Correlaties/covarianties tussen meetpunten worden meegemodelleerd.
 
Hier eventueel formule
 
==Hoe modelleer ik de covariantiestructuur van mijn mixed model?==
 
Twee opties:
1. direct de covariantie structuur specificeren
2. random effects specificeren
 
== Waar vind ik linear mixed models in SPSS?==
Je vindt de linear mixed models in SPSS 16 onder Analyze->Mixed models->Linear. In [[statistische software#SPSS|SPSS 16]] is er alleen nog een mixed model beschikbaar voor lineaire uitkomsten. In andere pakketten zoals [[statistische software#R|R]] en [[statistische software#SAS|SAS]] zijn er ook mixed modellen beschikbaar voor bijvoorbeeld dichotome uitkomstmaten.
 
==Voorbeeld: hoe analyseer ik met een mixed model een effect in de tijd?==
''Ik onderzoek een groep patienten die een operatie hebben ondergaan. We zijn geinteresseerd in de pijnscore (VAS) op verschillende tijdsmomenten na de operatie. De verwachting is (uiteraard) dat de pijn direct na de operatie heviger is dan bijv. 3 mnd daarna (dit klopt ook als je de data in een barplot zet). In eerste instantie heb ik de ANOVA for repeated measures gebruikt om te analyseren of de pijn significant verandert in de tijd. Maar, omdat ik een aantal missing data heb, heb ik ook geprobeerd een mixed models analyse (hier mijn [[Media:voorbeeld_mixed_model_spss.doc|syntax]]) te doen. Mijn vragen hierover: 
 
''1. Heb ik de juiste covariance structure gebruikt? (nl. AR1)


''2. Ik heb 'tijd' als fixed effect genomen omdat de afname van de VAS op specifieke tijdsmomenten gebeurde, klopt dat?
De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. Daarentegen is de interpretatie ervan mogelijk veel intuïtiever dan bij het gebruiken van geavanceerdere methodes.


''3. Hoe geef de resultaten van deze mixed analyse weer?
*'''Geavanceerde methodes''': Er bestaan ook methodes die wel alle herhaalde metingen gebruiken en corrigeren voor de afhankelijkheid van de metingen. Voorbeelden van analyses die geschikt zijn voor herhaalde metingen zijn o.a. [[mixed effects modellen]] (waaronder de [[repeated measures ANOVA]]) en [[Mixed effects modellen#Wat zijn GEE-modellen?| generalized estimating equations]] (GEE).


1. Of AR(1) de beste is is niet zo te zeggen, dat hangt af van de correlatie tussen de tijdsmomenten in jouw data. Je kunt bijvoorbeeld alle mogelijke structuren draaien en dan degene met de kleinste AIC te kiezen (smaller is better zoals er ook onder staat).  
Repeated measurements ANOVA is een specifieke variant van mixed effects-modellen, specifiek voor [[KEUZE TOETS#Van welk type is mijn data?|continue normaal verdeelde]] afhankelijke variabelen die op vaste en dezelfde tijdstippen zijn gemeten in alle patiënten.  
Mixed effects-modellen en GEE-modellen zijn flexibeler dan de [[repeated measures ANOVA]] en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijvoorbeeld [[KEUZE TOETS#Van welk type is mijn data?|dichotome]] afhankelijke variabelen. Bovendien kunnen de mixed effects modellen, in tegenstelling tot de [[repeated measures ANOVA]] ook omgaan met een zekere mate van [[missing values]], namelijk wanneer de data [[missing values#Welke soorten missing values zijn er?|missing at random]] zijn.


2. Tijd is hier inderdaad een fixed variable, want je wilt hier de hypothese toetsen of er een verandering in de tijd is.
==Hoe bereken ik met SPSS handig een area under the curve bij veel herhaalde metingen?==
''Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er namelijk een stuk of 300 bepalen... heeft u nog een advies?


3. In de output vind je onder "fixed effects" een B (beta) die aangeeft wat het effect is per tijdspunt (tov het startpunt) en een bijbehorende p-waarde. Dit is de toets die je waarschijnlijk wilt rapporteren. Onder het kopje "mean estimates" vind je de schatting van het model voor de gemiddelde VAS waarde op ieder tijdpunt. Deze mean estimates zijn voor een lezer makkelijker te interpreteren dan de betas.
Binnen SPSS kun je 'loops' gebruiken om bewerkingen of hercoderingen efficiënt uit te voeren. Je kunt de volgende [[Media: Syntax_for_calculating_AUC.doc | syntax ]] gebruiken, deze rekent per patiënt een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan.


=repeated measurements ANOVA=
== Hoe kan ik data van 4 experimenten combineren? ==


==Wanneer kan ik een repeated measurements ANOVA gebruiken?==
''De experimenten die ik verricht, heb ik in 4 sessies opgesplitst, aangezien het niet behapbaar was alle samples in een keer te verwerken. Nu blijkt dat de vergelijkingsgroepen (verschillende diagnoses) binnen elke serie toch wel erg klein zijn en vraag ik me af of en hoe ik de data van de 4 series zou kunnen combineren.


*geen / niet te veel missings
Wat wel gebruikt wordt bij zulk soort settings is het toepassen van een factor-correctie. Zie ook de referentie naar de paper van Ruijter <cite>[Ruijter2006]</cite> onderaan op deze pagina. Je kunt ook binnen een statistisch model een correctie voor de 'clustering'  binnen sessies meenemen, bijvoorbeeld door een [[herhaalde metingen#mixed models|mixed]] model of [[repeated measures ANOVA]] te gebruiken. Je beschouwt de experimenten dan als 'herhaalde metingen' binnen een sessie.
*vaste covariantie structuur


== Waar vind ik de repeated measurements ANOVA in SPSS?==


Je vindt de repeated measurements ANOVA in SPSS 16 onder Analyze->General Linear Model->Repeated measures.


= Referenties =
= Referenties =
<biblio>
#Gueorguieva2004 pmid=14993119
#West2009 pmid=19679634
#Ruijter2006 pmid=16398936
</biblio>


=Aanvullende bronnen=
*Deze post van Jonathan Bartlett over [http://thestatsgeek.com/2017/05/11/odds-ratios-collapsibility-marginal-vs-conditional-gee-vs-glmms/ Odds ratios, collapsibility, marginal vs. conditional, GEE vs GLMMs ] geeft aan wat het verschil is tussen GEE en GLMM (mixed model) aanpak bij binaire uitkomsten.
* [http://www.theanalysisfactor.com/repeated-and-random-2/ The analysis factor - The Repeated and Random Statements in Mixed Models for Repeated Measures] info over het onderscheid tussen de repeated en de random statement in SPSS mixed.
* [http://www.theanalysisfactor.com/repeated-measures-approaches/ The analysis factor] info over de verschillende aanpakken voor herhaalde metingen: repeated measurements anova, marginal model, mixed model.
* [http://www.floppybunny.org/robin/web/virtualclassroom/stats/course2.html Robin Beaumont Heath Informatics course material] Vrij te gebruiken cursusmateriaal over linear mixed models met uileg van specificatie in zowel SPSS als R, zie week 6 7 en 8. Inclusief bijbehorende Youtube instructiefilmpjes.


<div style="background-color:#e8f1ff; margin:0.5em; padding:1em; border:1px solid #C8D0DC;">
=Sofwaretips=
Terug naar [[OVERZICHT]] voor een overzicht van alle statistische onderwerpen op deze wiki.
*[http://www.gllamm.org/ GLLAMM] Een familie functies (vrij te downloaden/attachen) in [[Statistische software#Stata|Stata]], waarbij er opties zijn voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).
*[http://tigger.uic.edu/~hedeker/mix.html SuperMix] Een standalone programma geschikt voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).


Terug naar [[KEUZE TOETS]] voor hulp bij het uitzoeken van een geschikte toets of analyse.
{{onderschrift}}
<div>

Latest revision as of 16:11, 20 November 2024

Auteur dr. ir. N van Geloven
Co-Auteur prof. dr. A.H. Zwinderman
auteurschap op deze site

Wat wordt bedoeld met herhaalde metingen?

Herhaalde metingen zijn meerdere metingen van dezelfde variabele bij dezelfde persoon, patiënt, proefdier, of algemeen geformuleerd, dezelfde observationele eenheid. Voorbeelden:

  • herhaling in de tijd: als dezelfde meting herhaaldelijk bij een patiënt wordt uitgevoerd, bijvoorbeeld voor en na een behandeling, of gedurende een follow-up-periode;
  • meerdere locaties: als metingen worden verricht op meerdere locaties in het lichaam van dezelfde persoon (linker- en rechteroog, meerdere coupes in een biopt, meerdere slices in een MRI beeld);
  • meerdere condities: als dezelfde patiënt onder verschillende condities (bijv. twee behandelingen of testcondities) wordt gemeten, bijvoorbeeld bij een cross-over-studie of bij het vergelijken van beoordelaars;
  • herhalingen ten bate van nauwkeurigheid: als een meting een grote variatie binnen een persoon heeft (of een grote meetfout), of wanneer bijvoorbeeld de beperkte steekproefgrootte om een grotere nauwkeurigheid vraagt i.v.m. power, dan kan het zinvol zijn om een aantal aparte metingen te doen;
  • (andere) multilevel structuren: als metingen bij meerdere personen gedaan zijn die onderdeel uitmaken van dezelfde groep, of waarvan anderszins kan worden verondersteld dat metingen van personen binnen hetzelfde cluster meer op elkaar lijken dan twee metingen van personen uit een ander cluster. Bijvoorbeeld: Patiënten die dezelfde huisarts hebben (zeker indien de interventie per huisartspraktijk is uitgevoerd) of in hetzelfde ziekenhuis behandeld worden kunnen vaak niet als onafhankelijke observaties worden beschouwd. Het klassieke voorbeeld hier zijn leerlingen die dezelfde docent hebben en docenten die weer bij eenzelfde school horen.

Waarom kun je bij herhaalde metingen geen standaard regressiemodel gebruiken?

Bij een standaard regressiemodel wordt aangenomen dat alle metingen onafhankelijk van elkaar zijn. Bij herhaalde metingen is het waarschijnlijk dat twee metingen van dezelfde persoon meer op elkaar lijken dan twee metingen van verschillende personen. Als dat zo is, dan zijn de metingen binnen dezelfde persoon niet onafhankelijk. Als bij herhaalde metingen geen rekening wordt gehouden met deze afhankelijkheid, dan zijn i.h.a. de standaardfouten en de p-waardes (onterecht!) te klein. Bovendien kan de uitkomst van de regressie-analyse zelfs volkomen fout zijn, zoals geïllustreerd in het plaatje dat hieronder staat. In deze figuur worden de observaties van 12 personen getoond en elke persoon laat een duidelijk stijgende trend zien. Als de afhankelijkheid van de waarnemingen genegeerd wordt, dan is de best passende regressielijn door de totale puntenwolk de oranje dalende lijn en deze geeft geen correcte weergave van de trend per patiënt.

14189829-0.jpg

Welke analyses zijn er mogelijk voor herhaalde metingen?

  • Simpele methodes: Soms kunnen herhaalde metingen samengevat worden in een enkele relevante maat. Je kunt bijvoorbeeld de meting van slechts een tijdpunt of de verandering tussen twee meetpunten gebruiken, een samenvattende maat zoals het gemiddelde of de area under the curve uitrekenen, of de tijd tot het bereiken van een bepaalde grenswaarde van de uitkomstmaat te analyseren (survival analyse).

De simpele methodes gebruiken maar een deel van de verzamelde informatie en dat levert vaak minder onderscheidingsvermogen (power) op. Daarentegen is de interpretatie ervan mogelijk veel intuïtiever dan bij het gebruiken van geavanceerdere methodes.

Repeated measurements ANOVA is een specifieke variant van mixed effects-modellen, specifiek voor continue normaal verdeelde afhankelijke variabelen die op vaste en dezelfde tijdstippen zijn gemeten in alle patiënten. Mixed effects-modellen en GEE-modellen zijn flexibeler dan de repeated measures ANOVA en zijn beschikbaar voor zowel continue normaal verdeelde afhankelijke variabelen, als voor bijvoorbeeld dichotome afhankelijke variabelen. Bovendien kunnen de mixed effects modellen, in tegenstelling tot de repeated measures ANOVA ook omgaan met een zekere mate van missing values, namelijk wanneer de data missing at random zijn.

Hoe bereken ik met SPSS handig een area under the curve bij veel herhaalde metingen?

Ik wil graag van een bepaalde meting in de tijd, op verschillende tijdstippen gemeten, de 'area under the curve' bepalen. Ik kom er met SPSS niet uit. Ik moet er namelijk een stuk of 300 bepalen... heeft u nog een advies?

Binnen SPSS kun je 'loops' gebruiken om bewerkingen of hercoderingen efficiënt uit te voeren. Je kunt de volgende syntax gebruiken, deze rekent per patiënt een area under the curve uit. Bovenaan het document staat beschreven hoe je de variabelen in SPSS moet hebben staan.

Hoe kan ik data van 4 experimenten combineren?

De experimenten die ik verricht, heb ik in 4 sessies opgesplitst, aangezien het niet behapbaar was alle samples in een keer te verwerken. Nu blijkt dat de vergelijkingsgroepen (verschillende diagnoses) binnen elke serie toch wel erg klein zijn en vraag ik me af of en hoe ik de data van de 4 series zou kunnen combineren.

Wat wel gebruikt wordt bij zulk soort settings is het toepassen van een factor-correctie. Zie ook de referentie naar de paper van Ruijter [1] onderaan op deze pagina. Je kunt ook binnen een statistisch model een correctie voor de 'clustering' binnen sessies meenemen, bijvoorbeeld door een mixed model of repeated measures ANOVA te gebruiken. Je beschouwt de experimenten dan als 'herhaalde metingen' binnen een sessie.


Referenties

  1. Ruijter JM, Thygesen HH, Schoneveld OJ, Das AT, Berkhout B, and Lamers WH. Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. Retrovirology. 2006 Jan 6;3:2. DOI:10.1186/1742-4690-3-2 | PubMed ID:16398936 | HubMed [Ruijter2006]
  2. Gueorguieva R and Krystal JH. Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry. Arch Gen Psychiatry. 2004 Mar;61(3):310-7. DOI:10.1001/archpsyc.61.3.310 | PubMed ID:14993119 | HubMed [Gueorguieva2004]
  3. West BT. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval Health Prof. 2009 Sep;32(3):207-28. DOI:10.1177/0163278709338554 | PubMed ID:19679634 | HubMed [West2009]

All Medline abstracts: PubMed | HubMed

Aanvullende bronnen

Sofwaretips

  • GLLAMM Een familie functies (vrij te downloaden/attachen) in Stata, waarbij er opties zijn voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).
  • SuperMix Een standalone programma geschikt voor het modelleren van herhaaldelijk gemeten niet continue uitkomstmaten (dichotome, ordinale etc).

Klaar met lezen? Je kunt naar het OVERZICHT van alle statistische onderwerpen op deze wiki gaan of naar de pagina KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse. Wil je meer leren over biostatistiek? Volg dan de AMC e-learning Practical Biostatistics. Vind je op deze pagina's iets dat niet klopt? Werkt een link niet? Of wil je bijdragen aan de wiki? Neem dan contact met ons op.

De wiki biostatistiek is een initiatief van de voormalige helpdesk statistiek van Amsterdam UMC, locatie AMC. Medewerkers van Amsterdam UMC kunnen via intranet ondersteuning aanvragen.