Herhaalde metingen: Difference between revisions

From Wikistatistiek
Jump to navigation Jump to search
Line 3: Line 3:
=linear mixed models=
=linear mixed models=


''Ik onderzoek een groep patienten die een operatie hebben ondergaan. We zijn geinteresseerd in de pijnscore (VAS) op verschillende tijdsmomenten na de operatie. De verwachting is (uiteraard) dat de pijn direct na de operatie heviger is dan bijv. 3 mnd daarna (dit klopt ook als je de data in een barplot zet). In eerste instantie heb ik de ANOVA for repeated measures gebruikt om te analyseren of de pijn significant verandert in de tijd. Maar, omdat ik een aantal missing data heb, heb ik ook geprobeerd een mixed models analyse te doen. Mijn vragen hierover:   
''Ik onderzoek een groep patienten die een operatie hebben ondergaan. We zijn geinteresseerd in de pijnscore (VAS) op verschillende tijdsmomenten na de operatie. De verwachting is (uiteraard) dat de pijn direct na de operatie heviger is dan bijv. 3 mnd daarna (dit klopt ook als je de data in een barplot zet). In eerste instantie heb ik de ANOVA for repeated measures gebruikt om te analyseren of de pijn significant verandert in de tijd. Maar, omdat ik een aantal missing data heb, heb ik ook geprobeerd een mixed models analyse (hier mijn syntax) te doen. Mijn vragen hierover:   
 
''1. Heb ik de juiste covariance structure gebruikt? (nl. AR1)
''1. Heb ik de juiste covariance structure gebruikt? (nl. AR1)
''2. Ik heb 'tijd' als fixed effect genomen omdat de afname van de VAS op specifieke tijdsmomenten gebeurde, klopt dat?
''2. Ik heb 'tijd' als fixed effect genomen omdat de afname van de VAS op specifieke tijdsmomenten gebeurde, klopt dat?
''3. Hoe geef de resultaten van deze mixed analyse weer?
''3. Hoe geef de resultaten van deze mixed analyse weer?
''Gebruikte syntax:
''MIXED
''  VAS  BY tijd
''  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
''  SINGULAR(0.000000000001) HCONVERGE(0.1, ABSOLUTE) LCONVERGE(0.1, ABSOLUTE)
''  PCONVERGE(0.0001, ABSOLUTE)
''  /FIXED = tijd  | SSTYPE(3)
''  /METHOD = ML
''  /PRINT = SOLUTION
''  /REPEATED = tijd | SUBJECT(Patient) COVTYPE(AR1)
''  /EMMEANS = TABLES(tijd) COMPARE ADJ(LSD)  .


1. Of AR(1) de beste is is niet zo te zeggen, dat hangt af van de correlatie tussen de tijdsmomenten in jouw data. Je kunt bijvoorbeeld alle mogelijke structuren draaien en dan degene met de kleinste AIC te kiezen (smaller is better zoals er ook onder staat).  
1. Of AR(1) de beste is is niet zo te zeggen, dat hangt af van de correlatie tussen de tijdsmomenten in jouw data. Je kunt bijvoorbeeld alle mogelijke structuren draaien en dan degene met de kleinste AIC te kiezen (smaller is better zoals er ook onder staat).  

Revision as of 17:07, 24 March 2009

area under the curve

repeated measurements ANOVA

linear mixed models

Ik onderzoek een groep patienten die een operatie hebben ondergaan. We zijn geinteresseerd in de pijnscore (VAS) op verschillende tijdsmomenten na de operatie. De verwachting is (uiteraard) dat de pijn direct na de operatie heviger is dan bijv. 3 mnd daarna (dit klopt ook als je de data in een barplot zet). In eerste instantie heb ik de ANOVA for repeated measures gebruikt om te analyseren of de pijn significant verandert in de tijd. Maar, omdat ik een aantal missing data heb, heb ik ook geprobeerd een mixed models analyse (hier mijn syntax) te doen. Mijn vragen hierover:

1. Heb ik de juiste covariance structure gebruikt? (nl. AR1)

2. Ik heb 'tijd' als fixed effect genomen omdat de afname van de VAS op specifieke tijdsmomenten gebeurde, klopt dat?

3. Hoe geef de resultaten van deze mixed analyse weer?

1. Of AR(1) de beste is is niet zo te zeggen, dat hangt af van de correlatie tussen de tijdsmomenten in jouw data. Je kunt bijvoorbeeld alle mogelijke structuren draaien en dan degene met de kleinste AIC te kiezen (smaller is better zoals er ook onder staat).

2. Tijd is hier inderdaad een fixed variable, want je wilt hier de hypothese toetsen of er een verandering in de tijd is.

3. In de output vind je onder "fixed effects" een B (beta) die aangeeft wat het effect is per tijspunt (tov het startpunt) en een bijbehorende p-waarde. Dit is de toets die je waarschijnlijk wilt rapporteren. Onder het kopje "mean estimates" vind je de schatting van het model voor de gemiddelde VAS waarde op ieder tijdpunt. Deze mean estimates zijn voor een lezer makkelijker te interpreteren dan de betas.