Difference between revisions of "Logistische regressie"

From Wikistatistiek
Jump to navigation Jump to search
Line 1: Line 1:
 
{{auteurs|
 
{{auteurs|
 
|mainauthor= prof dr R.J. de Haan
 
|mainauthor= prof dr R.J. de Haan
|coauthor= prof dr J.W.R. Twisk
+
|coauthor=  
 
}}
 
}}
 
==Wanneer gebruik ik een logistisch regressie model?==
 
==Wanneer gebruik ik een logistisch regressie model?==

Revision as of 14:30, 22 January 2010

Auteur prof dr R.J. de Haan
Co-Auteur
auteurschap op deze site

Wanneer gebruik ik een logistisch regressie model?

Met logistische regressie kan je een dichotome uitkomstvariabele (dood versus leven, wel of geen klachten, etc.) relateren aan één of meerdere predictoren. Het basis idee achter logistische regressie is dat je de uitkomstvariabele zodanig transformeert dat er een soort lineaire regressie mogelijk is. De logistische regressie coëfficiënten van de onafhankelijke variabelen in het model kunnen vervolgens worden omgezet in odds ratio’s.

In tegenstelling tot bij lineaire regressie gelden bij logistische regressie niet al te veel statistische voorwaarden. Zo hoeven er bijvoorbeeld geen aannames te worden gedaan over de verdeling van de variabelen en mogen de voorspellers (of verklarende variabelen) zowel discreet als continu zijn. Wel moeten de observaties onafhankelijk van elkaar zijn. Dat betekent dat logistische regressie niet geschikt is om onderzoeksgegevens te analyseren waarbij de patiënten herhaaldelijk in de tijd zijn gemeten (voor herhaalde metingen bestaan andere technieken).

Hoe werkt logistische regressie?

In een logistisch regressiemodel wordt niet de dichotome uitkomst zelf gemodelleerd, maar de kans op die uitkomst. Omdat een kans loopt van minimum 0 tot maximaal 1 en bij lineaire regressie de uitkomstvariabele continu moet zijn, kunnen we de kans niet rechtstreeks als uitkomstvariabele gebruiken. We kunnen wel gebruik maken van de relatieve kans: de odds. Immers, de odds is een continue variabele die loopt van 0 tot oneindig. Vervolgens moet er statistisch nog iets aanvullends worden gedaan. De odds, die loopt van 0 tot oneindig, is immers nog niet normaal verdeeld, hetgeen óók een voorwaarde is voor lineaire regressie. Als uitkomstvariabele wordt daarom niet de odds gebruikt, maar de natuurlijke logaritme van de odds, die niet alleen continu maar ook normaal verdeeld is. In de logistische regressie vergelijking

is de natuurlijke logaritme van de odds de uitkomst variabele, is de constante, zijn Failed to parse (syntax error): {\displaystyle X_i, (i = 1,2, ….., k)} de verklarende variabelen of covariaten, en vormen de logistische regressiecoëfficiënten.

Hoe interpreteer ik mijn SPSS output bij gebruik van een enkelvoudig logistisch model?

(Het hierna volgende voorbeeld is afkomstig uit het boek “Inleiding in de toegepaste biostatistiek” van J.W.R Twisk, Elsevier gezondheidszorg, Maarssen, 2007).

Aan dit gedeelte van de wiki biostatistiek wordt nog gewerkt, binnenkort hier meer over logistische regressie.

Hoe interpreteer ik de output van een continue voorspeller een logistisch model?

Een van de risicofactoren die in ons model zit is de totale duur van de anesthesie in minuten. In het model geeft dit een B waarde van 0,005 en een odds ratio van 1,005 zien. Dit geeft een p waarde die sterk significant is (0.001), maar ik begrijp niet precies hoe ik die odds ratio moet interpreteren. Wat ik denk is dat het de toename van de kans op postoperatieve misselijkheid per minuut anesthesieduur weergeeft, maar zeker weten doe ik dat niet.

Je interpretatie per minuut is juist. Om een meer sprekende OR te krijgen zou de duur bijvoorbeeld door 10 kunnen delen. De OR wordt dan gegeven per 10 minuten toename van anesthesie. Als je daarbij geen afronding gebruikt, verandert er verder niets aan het model.

Waar vind ik logistische regressie in SPSS?

Je vindt deze techniek in SPSS 16 onder Analyze->Regression->Binary Logistic.

Referenties

Terug naar OVERZICHT voor een overzicht van alle statistische onderwerpen op deze wiki.

Terug naar KEUZE TOETS voor hulp bij het uitzoeken van een geschikte toets of analyse.